Several different devices are utilized in modern flight training. These range from simple Part-Task Trainers (PTTs) that cover one or more aircraft systems to Full Flight Simulators (FFS) with comprehensive aerodynamic and systems modeling. This spectrum encompasses a wide range of fidelity as to physical cockpit characteristics and quality of software models, as well as various implementations of sound, motion, and visual sensory cues. The following training device types are in common use:
- Cockpit Procedures Trainer (CPT) - Used to practice basic cockpit procedures, such as processing emergency checklists, and for cockpit familiarization. Certain aircraft systems may or may not be simulated. The aerodynamic model is usually extremely generic if present at all. CPTs are usually not regulated.
- Aviation Training Device (ATD) - Used for basic training of flight concepts and procedures. A generic flight model representing a "family" of aircraft is installed, and many common flight systems are simulated.
- Basic Instrument Training Device (BITD) - A basic training device primarily focused on generic instrument flight procedures.
- Flight and Navigation Procedures Trainer (FNPT) - Used for generic flight training. A generic, but comprehensive flight model is required, and many systems and environmental effects must be provided.
- Integrated Procedures Trainer (IPT) - Provides a fully simulated cockpit in a 3D spatial cockpit environment that combines the use of multiple touch-sensitive screens that display simulated panels in the same size as the actual aircraft panels with hardware replica panels.
- Flight Training Device (FTD) - Used for either generic or aircraft-specific flight training. Comprehensive flight, systems, and environmental models are required. High level FTDs require visual systems but not the characteristics of a Full Flight Simulator (FFS), see below.
- Full flight simulator (FFS) - Used for aircraft-specific flight training under rules of the appropriate national civil aviation regulatory authority. Under these rules, relevant aircraft systems must be fully simulated, and a comprehensive aerodynamic model is required. All FFS require outside-world (OTW) visual systems and a motion platform.
- Full Mission Simulator (FMS) - Used by the military to denote a simulator capable of training all aspects of an operational mission in the aircraft concerned.
- In many professional flight schools, initial training is conducted partially in the aircraft and partially in relatively low-cost training devices such as FNPTs and FTDs. As the student becomes familiar with basic aircraft handling and flight skills, more emphasis is placed on instrument flying, cockpit resource management (CRM), and advanced aircraft systems, and the portion of flight training conducted in these devices increases significantly. Finally, for more advanced aircraft-specific training, Full Flight Simulators (FFS) are used, particularly as part of the training for the Commercial Air Transport (CAT) aircraft that the pilot will eventually fly.
For many commercial pilots, most aircraft orientation and recurrent training is conducted in high level FTDs or FFS.
In comparison to training in an actual aircraft, simulation-based training allows for the training of maneuvers or situations that may be impractical (or even dangerous) to perform in the aircraft, while keeping the pilot and instructor in a relatively low-risk environment on the ground. For example, electrical system failures, instrument failures, hydraulic system failures, environmental system failures, and even flight control failures can be simulated without risk to the pilots or aircraft.
Instructors can also provide students with a higher concentration of training tasks in a given period of time than is usually possible in an aircraft. For example, conducting multiple instrument approaches in the actual aircraft may require spending a significant amount of time repositioning the aircraft, while in a simulation, as soon as one approach has been completed, the instructor can immediately reposition the simulated aircraft to an ideal (or less than ideal) location from which to begin the next approach.
Flight simulation also provides an economic advantage over training in an actual aircraft. Once fuel, maintenance, and insurance costs are taken into account, the operating costs of an FSTD are usually substantially lower than the operating costs of a simulated aircraft. For some large transport category airplanes, the operating costs may be several times lower for the FSTD than for the actual aircraft.
Posting Komentar